纳米光电材料课程论文-李金光-东南大学
时间:2025-04-07
时间:2025-04-07
纳米光电材料课程论文-李金光-东南大学-主要阐述核心概念
纳米材料特性及纳米技术应用探讨
李金光(04008033)
(东南大学 信息科学与工程学院,南京 210096)
摘 要: 纳米科技是21世纪的主导产业,世界各国把纳米科技的研究和应用作为战略重点。在第五次科学技术革命中,新材料家族被推上新一轮科技革命的顶峰。在新材料和新技术中,纳米材料和纳米技术无疑将成为核心材料和核心技术。纳米技术的最终目标是直接操纵单个原子和分子,制造新功能器件,从而开拓了人类崭新的生活模式。文章概述了纳米科技的发展过程及纳米材料的性质与制备,介绍了纳米科技在部分领域的应用,并简述了纳米技术对未来社会的巨大影响及潜在的、令人鼓舞的发展前景。 关键词: 纳米;纳米技术;纳米材料;应用
Discussion on the Characteristic of Nanometer Materials and
the Application of Nano-Technology
Li Jinguang
(Department of of Information Science and Engineering, Southeast University, Nanjing 210096)
Abstract:
Nanometer technology is the leading industry in the 21st century. Study and application of
nanometer technology has been regarded as the most important strategic point by every country. In the 5th science and technical revolution, new material has been put on the top of the new technology. The final target of nanometer technology is to manufacture new function devices that can control atom or molecule directly. This article introduces the developments of nanometer, as well as the next century together with their potential and prosperity prospects are discussed.
key words: Nanometer; nanotechnology; nanomaterial; applications
引言
纳米科技(英文:Nanotechnology)是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。纳米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国的国家纳米科技启动计划(National Nanotechnology Initiative)将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。纳米科技的世界为原子、分子、高分子、量子点和高分子集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲
水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。
微小性的持续探究以使得新的工具诞生,如原子力显微镜和扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成纳米结构。纳米材质,不论是由上至下制成(将块材缩至纳米尺度,主要方法是从块材开始通过切割、蚀刻、研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。或由下至上制成(由一颗颗原子或分子来组
纳米光电材料课程论文-李金光-东南大学-主要阐述核心概念
成较大的结构,主要办法有化学合成,自组装(self assembly)和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。这一效应不是因为尺度由巨观变成微观而产生的,但它确实在纳米尺度时占了很重要的地位。物质在纳米尺度时,会和它们在巨观时有很大的不同,例如:不透明的物质会变成透明的(铜)、惰性的物质变成可以当催化剂(铂)、稳定的物质变得易燃(铝)、固体在室温下变成了液体(金)、绝缘体变成了导体(硅)。 纳米科技的神奇来自于其在纳米尺度下所拥有的量子和表面现象,并因此可能可以有许多重要的应用和制造许多有趣的材质。
称作磁阻效应,而这种效应明显和环的小尺寸有关,主要是金环内的电子受到金环纳米尺寸的干扰,而在环内两侧震荡。一般块状金是电的良导体,电阻值很小,不受磁场的影响。但上述纳米金环的结果显示,当金粒子小到纳米尺度时,其物理性质与大尺寸时不同,这个现象可以用来制作新的纳米电子元件。
1984年德国葛莱特等人利用惰性气体蒸发凝结法,制得铁、铜、铅及二氧化钛的纳米粒子。其
中,二氧化钛的纳米颗粒具有良好的延展性,可以改善陶瓷材料的脆性。
1982年瑞士IBM公司的科学家格尔德·宾宁(Gerd K. Binnig)及亨利希·罗勒(Heinrich Rohrer),开发出扫描隧道显微镜,它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,依此来观测物体表面的形貌。四年后,也就是1986年,这两位科学家和发明穿透式电子显微镜的厄恩斯特·鲁什卡共享诺贝尔物理奖。
1 纳米技术历史
1959年12月29日物理学家理查德·费曼在加州理工学院出席美国物理学会年会,作出著名的演讲《在底部还有很大空间》,提出一些纳米技术的概念,虽然在当时仍未有“纳米技术”这个名词。他以“由下而上的方法”(bottom up)出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一 …… 此处隐藏:14865字,全部文档内容请下载后查看。喜欢就下载吧 ……