A Robot Joint With Variable Stiffness Using
发布时间:2024-11-21
发布时间:2024-11-21
机器人,刚度,柔性
IEEETRANSACTIONSONROBOTICS,VOL.27,NO.2,APRIL2011229
ARobotJointWithVariableStiffnessUsing
LeafSprings
JunhoChoi,Member,IEEE,SeonghunHong,StudentMember,IEEE,WoosubLee,SungchulKang,Member,IEEE,
andMunsangKim,Member,IEEE
Abstract—Interactionwithhumansisinevitableforservicerobots,http://pliantcomponentisananswertothesafetyissueatthecostofperformancedegradation.Inordertoreducetheperformancedegradation,manipulatorsequippedwithvariablestiffnesshavebeenstudiedbymanyresearchers.Thispaperpresentsavariablestiffnessjoint(VSJ)designedforarobotmanipulator,http://plianceisgeneratedbyleafspringsandtwoactuatorsareusedtocontrolthepositionandstiff-nessofthejointusingfour-barlinkages.Twoactuatorsinparallelcon gurationareconnectedtothespring.Changingtheeffectivelengthofthespringresultsinachangeinstiffness.Thepositionofthejointiscontrolledviatwoactuatorsrotatingatthesamespeedinthesamedirection.AnonlinearcontrollerisusedtocontroltheVSJ,andasingularperturbationmodelisadoptedtoprovethestabilityoftheclosed-loopsystem.Experimentsareconductedtoshowthatthepositionandstiffnessarecontrolledindependentofeachother,andhavinglessstiffnessatthejointhelpsinmakinganunexpectedcollisionwithanobjectsafer.
IndexTerms—Actuators,servicerobots,variablestiffness.
I.INTRODUCTION
ERVICErobotsdesignedfordailychoresathomerequiredifferentdesignapproachesthanindustrialrobotstoen-surephysicalsafety.Fortraditionalindustrialrobots,safetyofahumanoperatorisensuredbysegregatingworkspacesofthehumanoperatorandtherobots,whereasitisdif culttosegre-gatetheworkspaceoftheservicerobotsandhumanssincethetaskrequirestherobotstosharetheworkspacewithhumans.Inordertoaddressthesafetyproblemofservicerobots,intro-ducingcompliancetothejointsoftherobotshasbeenstudied.Activecomplianceismimickingmechanicalcomplianceusingactuatorsandsensordata.In[1],arobotwithrigidjointswas
S
ManuscriptreceivedFebruary23,2010;revisedAugust24,2010;acceptedDecember13,2010.DateofpublicationJanuary20,2011;dateofcurrentver-sionApril7,2011.ThispaperwasrecommendedforpublicationbyAssociateEditorE.GuglielmelliandEditorK.Lynchuponevaluationofthereviewers’comments.ThisworkwassupportedbytheIntelligentRoboticsDevelopmentProgram,whichisoneofthe21stCenturyFrontierR&DProgramsfundedbytheMinistryofKnowledgeEconomyofKorea.
J.Choi,W.Lee,S.Kang,andM.KimarewiththeCenterforCognitiveRoboticsResearch,KoreaInstituteofScienceandTechnology,136-791Seoul,Korea(e-mail:junhochoi@kist.re.kr;robot@kist.re.kr;kasch@kist.re.kr;munsang@kist.re.kr).
S.HongiswiththeCenterforCognitiveRoboticsResearch,KoreaInstituteofScienceandTechnology,136-791Seoul,Korea,andalsowithHanyangUni-versity,133-791Seoul,Korea(e-mail:weluxmea@kist.re.kr).
Colorversionsofoneormoreofthe guresinthispaperareavailableonlineathttp://.
DigitalObjectIdenti er10.1109/TRO.2010.2100450
controlledtoexhibitcompliantmotionusingforcefeedback.De ectionsinCartesiancoordinateandorientationoftheend-effectorweredeterminedbytheforceandtorquesensordataandcompliancegain.In[2],distributedmacro–miniactuationwasusedwithdifferentactuatorcharacteristics.Alargeactuatorwasusedforhigh-torqueandlow-frequencymovement,whilelow-torqueandhigh-frequencymovementwascoveredbyasmallactuator.Inordertoreduceinertiaofthemanipulator,thelargemotorwaslocatedatthebaseofthemanipulator,andthesmallmotorwasplacedatthejoint.Formorecompactdesign,apneumaticactuatorwasusedforlowfrequencybandwidthin[3].
Whenthesensorsfailedorsamplingfrequencywaslow,activecompliancebecomesunreliabletoensuresafetyofthehumans,whichwaspointedoutbyWangetal.[4],whereacomparisonstudywasconducted.Moreover,withoutanysen-sorfailureorwithhighsamplingfrequencies,mechanicalorelectricalbandwidthofthesystemmightpreventsecuringthesafetyofhumansfromunexpectedcollisions.Sinceactivecom-plianceislimitedinensuringthemanipulatortoremainsafe,passivecompliancehasbeenpaidmuchattentionduetoitsre-liabilitywhensafetyisaprimaryconcern.Forvariousdesignsofactuatorswithpassivecompliance,see[5]andreferencestherein.
Introducingcompliance,however,posesacontrolproblem,whichhasbeenstudiedbymanyresearchers.Bicchietal.in-vestigatedarobotjointwithnonlinearspringsandthecon-trolproblemassociatedwiththemechanicalcompliancein[6].Feedbacklinearizationwasusedtocontrolajointwithcon-stantcompliancein[7]andjointswithvariablestiffnessin[8]and[9].Tomeiusedaproportional–derivative(PD)controllerandprovedthestabilityofthejointwithacompliancein[10].Spong[11]presentedtwodifferentmethodsincontrollingajointwithelasticity,whichwereusingfeedback-linearizationmethodandformingthedynamicsasasingularlyperturbedsystem.Inordertorealizeanactuatorwithpassivecompliance,ase-rieselasticactuator(SEA)wasintroducedin[12].TheSEAhadadvantagesoflow-pass- lteringshocksfromandtotheactuatorandchangingtheforce-controlproblemtotheposition-controlproblem.However,complianceduetothespringcausesposi-tioninaccuracyandlowerbandwidth.Adjustablecompliancealleviatestheseproblems.Onewaytorealizeadjustablecom-plianceistochangethepretensionofthespringconnectedtothemotor.In[13],anadditionalmomentarmandamotorwereusedtogenerateandcontrolcompliance.In[14],anonlinearspringwasrealizedwithspiralpulleysandlinearsprings.Theactuatorwasdesignedforajointofarobottohelptherobotto
1552-3098/$26.00©2011IEEE
机器人,刚度,柔性
230walk.In[15],acamdiskandrollerspressedbylinearspringswereused.Bycontrollingthepressingforcefromthespring,thestiffnesswasvaried.Inthesedesigns,onecompliantcomponentandtwomotorswererequired.Thestiffnessandpositionofthejointwerecontrolledindependentlybyeachmotor.However,itwasnotpossibleforthejointtobecomecompletelystiff.
Anotherwayistochangetheeffectivelengthofthespring.Hollanderetal.[16]usedahelicalspringandcontrolledthenumberofeffectivecoiltochangestiffness.Sincechangingthenumberofeffectivecoilchangedtheeffectivelengthofthespringaswellasthestiffness,itwasnotpossibletocontrolthestiffnessandpositionofthejointindependently.In[17],http://inglead–screwmechanism,theeffectivelengthofthespringwaschanged,whichcausedthestiffnessofthejointchange.Inthesedesigns,itwaspossibleforthejointtoberigid.However,themotorandthedevicetochangethestiffnessbe-cameanadditionalloadtothemotortocontrolthepositionsincetheywereconnectedinseries.
Actuatorsinparallelcon gurationhaveadvantageoveractua-torsinseriessincetheloadofthejointissharedbytheactuators.Twomotorswithnonlinearspringsantagonisticallyconnectedresultinajointwithadjustablecompliance.Torealizeanon-linearspring,rolamitespringswereusedin[18].Theshapesofthespringsweredesignedsothatthestiffnessofthespringbecamenonlinear.Withnonlinearityofthespring,stiffnessofthejointwasvariable.In[19],http://edatimingbeltandlinearspringstorealizenonlinearspringsin[20].Sincethepowerofthemotorswastransmittedthroughthetimingbelt,thestrengthofthebeltlimitedthemaximumallowablepayload.Theexistenceoftheidlepulleymadethejointbulky.Toovercomesuchdisadvantages,anotherdesignwaspresentedin[21].ThepresentedVSA-IIusedafour-barlinkagesystemtotransmitthepower,whichshowedmorerobustnessandlargerload-bearingcapability.Intheseantagonisticdesigns,twomotorsandtwospringswereusedtocontrolthestiffnessandposition.Rotationofthemotorswithrelativeangleofthemotorsunchangedmadethelinkrotate.Whentherelativepositionofthemotorsvariedwiththemeanpositionofmotorsunchanged,thestiffnessoftheactuatorwaschanged.Inordertoholdaconstantstiffness,themotorsneedtoapplytorque,whichimpliespoorerenergyef cient.
Preliminaryconceptofthevariablestiffnessjoint(VSJ)waspresentedin[22]withoutcontrolmethodandproofofthesta-bility.Inthispaper,thecontrolmethod,aswellasthedesignoftheVSJ,ispresented.InSectionII,http://plianceisgeneratedbytheleafspringswhoseef-fectivelengthiscontrolledbytheactuatorsviafour-barlinkage.Insteadofoneactuatorbecominganadditionalloadtotheotheractuator,twoactuatorsevenlysharetheloadofthejoint,whichresultsinbetterenergyconsumption.Inaddition,thefour-barlinkagemakestheVSJmoreenergyef cientsinceitisnotre-quiredtoapplyadditionaltorqueinordertoholdstiffness,asdiscussedin[23],whereenergyconsumptionofvarious
actua-
IEEETRANSACTIONSONROBOTICS,VOL.27,NO.2,APRIL2011
Fig.1.SchematicsoftheVSJ.Leafspringsareattachedtotheaxis,andtheeffectivelengthofthespringisvariedbyfour-barlinkages,whichareactuatedbytwoidenticalactuators.
torswithadjustablepassivecompliancewerecompared.Itwasshownthathavingtoapplytorquetoholdaconstantstiffnesswasareasonofhigherenergyconsumption.InSectionIII,acontrolmethodisintroduced.Eachactuatoriscontrolledbyavelocitycontroller,andthelinkiscontrolledviafullstatefeedback.ThedynamicsoftheVSJisformedasasingularlyperturbedsys-tem.ThestabilityoftheVSJwiththecontrollerisshownusingaLyapunovfunction.InSectionIV,theresultoftheexperimentispresented.ToshowtheeffectofthevariablestiffnessoftheVSJ,anexperimentofhittingballswithdifferentstiffnessarepresented.Whenthestiffnessismaximum,ballsthatarehitbythelinkoftheVSJ yfartherthanminimumstiffness.Theexperimentshowsthattheaccelerationoftheballsaftercolli-sionwiththelinkissmallerwhenthestiffnessissmall,whichimpliesthatthecollisionissafer.TheconclusionismadeinSectionV.
II.DESIGNOFTHEVARIABLESTIFFNESSJOINT
ThedesignoftheVSJispresentedinthissection.ThemainconceptoftheVSJistohavetwoidentical“actuators”http://plianceisgeneratedbyleafsprings.Changingtheeffectivelengthofthespringsresultsinstiffnesschange.Inordertochangetheeffectivelengthofthesprings,afour-barlinkagesystemisused(seeFig.1).
Notethatthecompliancecomponentislocatedinserieswiththeactuators,whereastheactuatorsareinparallelcon guration.Duetotheparallelcon gurationoftheactuators,theloadtothejointisevenlydistributedtoeachactuator,whereasoneactuatorbecomesanadditionalloadtotheotherincaseofseriesactuation.Furthermore,sincecomplianceisgeneratedbytheleafspringandtheactuatorscontroltheeffectivelengthoftheleafsprings,nopowerisnecessarytoholdthestiffness,whichimpliesthattheVSJismoreenergyef cient.Sinceitisnotnecessarytouseanadditionalmechanismtochangestiffness(i.e.,leadscrew),asimplerdesignispossible.Astheslidermovestowardtotheaxisofrotation,theeffectivelengthofthespringbecomeszero,whichimpliesthattheVSJbecomesarigidactuator.
机器人,刚度,柔性
CHOIetal.:ROBOTJOINTWITHVARIABLESTIFFNESSUSINGLEAFSPRINGS
Fig.2.Axiswithfouridenticalspringsattached.Theslidersmovealongwiththespringswiththerollersinsideofthe
sliders.
Fig.3.Linkaisattachedtotheactuatorsandrotatesabouttheaxis.Thesliderisconnectedtothelinkb,whoseotherendisconnectedwithlinka.Thespringsareattachedtotheaxissothattheaxisrotateswhentheslidersrotate.
A.GeneratingComplianceWithLeafSpring
ComplianceoftheVSJisgeneratedbyNleafsprings,whichareattachedtotheaxis.Thespringsareseparatedby360/Ndegrees.Oneendofeachspringisattachedtotheaxisandtheotherendremainsfreesothatthespringbendswithanexternalforceappliedtothespring.Tworollers,whicharecontainedinaframecalled“slider,”rolloneachsideofthespring(seeFig.2).Effectivelengthofeachspringisdeterminedbythepositionofthesliderintheradialdirection.Theupsideanddownsideofeachsliderareheldbytwolinks,whicharecalled“outputlinks”ofafour-barlinkages.Alinkthatisconnectedtoeachactuatoriscalleda“Inputlink.”Theinputlinksaredesignedtobeacircularframe,whichareconnectedtotheharmonicgearsoftheactuators(seeFig.3).
Thefour-barlinkagetransformsrotationintotranslationalmovementanddeterminedthepositionoftheslider.Withtherelativepositionoftheactuatorsbeingunchanged,theeffectivelengthofthespringremainunchanged.Then,theVSJactsasanactuatorwithconstantcomplianceconnectedinseries.Fig.4showstheassembledVSJ.Theguidespreventtheslidersfrombeingdistortedduetotheappliedtorqueattheaxis.
Stiffnessofeachspringiscalculatedusingthepositionoftheslideranddimensionofthespring(seeFig.5).
LetDbethediameteroftheaxisandletlbethedistancetothesliderfromtheaxis.Whenanexternaltorqueisapplied,thespringsbendduetothetorqueandangulardisplacementoftheaxis.LettingdFibetheforceappliedtoithsliderdueto
the
231
Fig.4.AssembledVSJwithfoursprings.Theguidepreventsthepivotfrombeingtwistedbyapplied
torque.
Fig.5.Schematicofithleafspringwithrollers.Whentherollersslideontheleafspring,theeffectivelengthofthespringchanges,whichisthedistancebetweentheaxisandtherollers.Changeoftheeffectivelengthofthespringresultsinchangingstiffness.
externaltorque,thentheforceisgivenasfollows:
dFdθ
i=
σil+(D/2)
,
i=1,...,N
(1)
whereσiistorsionalstiffnessofeachspring,dFiistheforceateachsliderduetothetorque,anddθistheangulardisplacementoftheaxis.Notethattheamountofbentisthesameforeachspringsinceallthespringsareattachedtotheaxisandthatthepositionsoftheslidersareidentical.Then,thedisplacementofthesliderinangulardirectionisapproximatedas
dδ=(l+D/2)dθ.
(2)
LettingLi0bethelengthofithspring,wibethewidthofthespring,andtibethethicknessofthespring,thenfollowingthedevelopmentin[24],theforcetothesliderisgivenasfollows:dFEi=iwit3i
4l
3dδ(3)whereEiistheYoung’smodulusofeachspring.Therefore,with(1)–(3),thestiffnessofthejointisgivenas
σD/2)dFi=(l+idθ=(l+D/2)2Eiwit3
i
4l3
.(4)
Thestiffnessofthejointisgivenas
σ=
Nσ Ni=
(l+D/2)2
Eiwit3i
(5)
i=1
i=1
4l
3.NotethatstiffnessoftheVSJisdeterminedbytheshapeand
materialoftheleafspring.Sincestiffnessdependsontheshapeofthespring,itispossibletodesignstiffnessoftheVSJbydesigningtheleafspring,i.e.,rectangularshape,taperedshape,
机器人,刚度,柔性
232Fig.6.Schematicsoflinkagesconnectedattheslider.Thelinkaanddareattachedtobothactuators.Allthejointsofthefour-barsystemarerevolutejoints.Thesliderisconnectedtothelinkbandcsothatitispossiblefortheslidertorotatefreely.
etc.However,therangeofstiffnessfunctionobtainedbyde-signingthespringislimited.Forsimplicity,arectangularshape
ischoseninthispaper.B.ChangingtheStiffness
Inordertochangethestiffness,itisnecessarytochangethepositionsoftheslidersinradialdirection.Thepositionsoftheslidersarechangedbychangingtherelativepositionsoftwoinputlinksofthefour-barlinkages.Allthejointofthefour-barsystemarerevolutejoints(seeFig.6).Twooutputlinksthatareconnectedtoasliderhavethesamelength.Theothertwolinksareinputlinksandhavethesamelength.Eachinputlinkisattachedtoeachactuator.
ThepointOislocatedatthecenteroftherotationalaxis.Theinputlinksaredenotedbyaandd,respectively.Theoutputlinksaredenotedbybandc.Letr1bethelengthofthelinksaandd,andletr2bethelengthofthelinksbandc.Letting2ζ1betheanglebetweenthelinksaandd,then,thedistancetothesliderfromthepointO,whichisdenoted
byr,isgivenasfollows:
r=r1cosζ1+r22 r21sin2ζ1(6)wherer>0,and0<ζ1<π/2.Sincetheinputlinksrotate
aroundtheaxis,thedistancetothesliderbecomesr=l+D/2(seeFig.5).Thetorsionalstiffnessiscalculatedusing(5)and(6)asfollows:
σ(ζ(r1cosζ1+r22 r21sin2ζ1)2 NE1)=
iwit3i
(r1
cosζ1
+r22
r21
sin2ζ1
D2
)3i=1
4(7)
whereσ(ζ1)isaninvertiblefunctionfor0<ζ1<π/2.Notethatasζ1increases,theeffectivelengthofthespringbecomeszero.Then,theVSJbecomesarigidjoint.
Letq1andq2bethepositionofeachactuator.Sincethelinkaanddareattachedtoeachactuator,ζ1isgivenasfollows:ζq1=
1 q2
2
.(8)SincestiffnessoftheVSJdependsontheeffectivelengthoftheleafspring,whichisdeterminedbythelocationofthesliderintheradialdirection,controllingthepositionofthesliderintheradialdirectionisequivalenttocontrollingthestiffness.
Equa-
IEEETRANSACTIONSONROBOTICS,VOL.27,NO.2,APRIL
2011
Fig.7.Controllerofeachactuator.ThevelocityofeachcontrolleriscontrolledusingthePIcontroller.
tion(6)showsthatthelocationofthesliderinradialdirectionisafunctionoftherelativeanglebetweentheactuators,whichisdenoted2ζ1inFig.6.Thelocationofthesliderinangulardirection,however,istherestpositionofthespring.Sincethefour-barlinkagesystemissymmetric,therestpositionofthesliderisgivenasfollows:
ζq2=
1+q2
2
(9)
whereq1andq2arethepositionsoftheactuators.
III.CONTROLLINGTHEVARIABLESTIFFNESSJOINTThevelocityofeachactuatoriscontrolledbyaproportional-integral(PI)controller(seeFig.7).
TheresponseofthePIcontrollerisfasterthanothercontrollersothatitisassumedthatthevelocityoftheactuatorreachesthedesiredvelocityinstantaneously.Then,thedynamicsoftheVSJ,includingthe
velocitycontrollers,isgivenasfollows:
q˙1=v1 q˙2=v2q¨3= σ((q(10)1 q2)/2)q1+q2
Jl(q3 2)whereq3isthepositionofthelink,Jlisthemomentofinertia
ofthelink,σ((q1 q2)/2)isthestiffnessgeneratedbytheleafspring,andv1andv2denotethevelocitycommandtoeachactuator,respectively.Since(q1+q2)/2istherestpositionoftheleafspring,andq3isthepositionofthelink,thedifferenceisthede ectionoftheleafspring.
Let usde neacoordinatetransform ζ 1/20 Tq asfollows: 11/2 1q1ζ2 = 1/21/20 q2 =T q2 .(11)
ζ3001q3q3Then,thedynamics oftheVSJinζcoordinatesbecomes ζ˙
ζ˙1=u1
ζ¨2=u23= σ(ζ(12)1)
Jl(ζ3 ζ2)whereu1=(LettingKpv1 v2)/2,andu2=(v1+v2)/2.
,Ksp,andKdtrollawofthef
VSJisde nedsbenonzeroconstants,thenthecon-asfollows:
u1=Kpf(ζ1 ζ1d
)(13)upK2=Ksζ2
sp
Kp2ζ3 sdd2
ζ3+Ksζ˙3(14)
whereζdandζdandlink1
3arethedesiredrelativepositionoftheactuatorsposition,respectively.IntypicalapplicationoftheVSJ,sinceitistypicalthattheVSJisconnectedtoalink,which
机器人,刚度,柔性
CHOIetal.:ROBOTJOINTWITHVARIABLESTIFFNESSUSINGLEAFSPRINGShasbiggerinertiathanfour-barlinkagesandtheactuatorsaresharedtocontrolthepositionandthestiffnessoftheVSJ,itisinevitabletocontrolthepositionofthelinkslowerthanpositionoftheactuators.ItisassumedthatKprelative
=(1/ )K(13),where isasmallpositiveconstant.Then,f
thedynamicsspinofthe closed-loopsystembecomes
ζ˙1=Ksp(ζd ζ˙1 ζ1)Kp(ζp
2=2 ζ3)+Ks(ζ3 ζd)+Kdζζ¨s3=
σ(ζ23s˙3(15)1)
Jl
(ζ3 ζ2).Thedζ˙equilibriumpointof(15)isζ1=ζζf=ζ1
,ζ2=ζ3=ζ3d
,and3=0.Letting1 ζ1
d,andζs ζ 2 ζζs= ζ2
s3d
ζ˙3 = ζ3
s3 dζ˙ζ3 (16)3thenthedynamicsoftheclosedloopsysteminthestatespace
isgivenas
ζ˙f=Kp s
ζf=:ff(ζf)pssp
s
sd˙s ζ˙s= K(ζ ζ˙s2 ζ3)+Kζ+Ksζ33s23
(17) σ(ζf)
J(ζ3s ζ2sl)
=:fs(ζf,ζs)
(18)
withζf0=0,andζ0s
=[0,0,0]Tbeingtheequilibriumpoint.
Sinceζf=0istheuniquesolutiontoff(ζf)=0whenKp0istheisolatedequilibriumpointof(17)forζss=0,h(ζs0
):=3∈IR.Then,models(17)and(18)areinthestandardformofsingularperturbation.Followingthestandardapproachin[25],theboundary-layersystemisgivenas
ζ˙f=ff(ζf)=Ks
pζf.(19)
Thereducedsystemis givenasfollows:Kps ζ˙s(ζ2 ζ3s)+Kp
sζs+Ksdζ˙ss=fs(ζf0
,ζs)= ζ˙3s23
3 ) .(20)
σ(ζf
0Jl(ζ3
ζ2)
Lemma1stableatζf.Theboundary-layersystem(19)isexponentially
=0,ifKpProof:Letting0
Vs<0.f=(1/2)(ζf)2bethecandidateLyapunovfunction,then,forallζf=0,thederivativeoftheLyapunovfunctionisgivenby
V˙f=ζfζ˙f=Ks
p(ζf)2<0.(21)
Sincethesystemislinear,thesystemisexponentiallystable.
Notethattherelativepositionoftheactuatorsneedstobecon-trolledwithinboundariesduetothelimitedrangeofmovement.Theboundariesaredeterminedbythelengthofthefour-barlinkagesandthelengthoftheleafspring.Whendesigningareferencetrajectoryfortherelativepositionoftheactuators,thereferenceneedstoremainwithintheboundaries.
Lemma2:Letλbeapositiveconstant,andletκ0=σ(ζf
)/Jl.LettingKsp= 2λ,andKsd
= 1 (λ2/κ0
0),thenthecontrollawofthereducedsystemin(14)isastabilizingcontrol
of
233
Fig.8.ImplementedVSJ.Itconsistsoftwoidenticalmotorsandharmonicgearsandfouridenticalleafspringsandsliders.
thereducedsystemin(20).Moreover,thereducedsystemisexponentiallystable.
Proof:ForproofofLemma2,seetheAppendix. Theorem1:Letubeacontrollawforthefullmodelandde nedasfollows:
u=u1= 2 λζf
u2= 2λζ2s+λζ3s 1+J2 lσ(ζλf)ζ˙3s(22)whereλ>0,thenthefullmodel(12)withthecontroller(22)
isexponentiallystable.
Proof:ζf=0isanisolatedrootoftheequation0=ff(ζf).ByLemmas1and2,theboundary-layersystemandthereducedsystemareexponentiallystable.Therefore,by[26,Th.9.3],thesystemisexponentiallystable. NotethattorquecontroloftheVSJispossible.SincetheVSJactsasanSEAin[12]whenthestiffnessisheldconstant,asimpleapproachistochangetheforce-controlproblemtoaposition-controlproblem.Thetorquegeneratedbytheleafspringisgivenas
τ=σ(ζ1)(ζ3 ζ2).
(23)
Whenthelinkpositionis xedatζ3=ζd
ζ3andtherelativepo-sitionis xedatζ1=d
with(23)as1,thedesiredrestpositionoftheVSJiscalculatedfollows:
ζτd
2
d=ζ3d σ(ζd)(24)
1
whereτdisthedesiredtorque,ζ1d
isthedesiredrelativeposition,
andζ3d
isthepositionofthelink.Then,itcontrolstherelativepositionoftheactuatorsandtherestpositionofthespring.Othermethodsarefoundin[27]–[29].
IV.EXPERIMENT
Inthissection,resultsofexperimentstoevaluatetheimple-mentedVSJarepresented.
Fig.8showstheimplementedVSJ.Twoidenticalactuatorsareconnectedtotheinputlinksofthefour-barlinkages.Each
机器人,刚度,柔性
234TABLEI
MODELPARAMETERSFORTHEVSJANDEACHC
OMPONENTFig.9.TorquegeneratedbytheVSJwithdifferentangulardisplacements.
actuatorconsistsofaharmonicgearandanelectricalmotor.Theelectricalmotorandtheharmonicgearisconnectedthroughatimingbeltwitha3:1gearratio.Sincethegearratiooftheharmonicgearis51:1,theoverallgearratiois153:1.Fouridenticalleafspringsareattachedtotheaxis.DimensionsoftheVSJandotherparametersarelistedinTableI.Theparametersaredesignedtomeetthespeci cationofthemanipulatorofaservicerobot.
Aslidermovesalongeachspringandtheoutputlinksofthefour-barlinkageareconnectedtothesliders.Therotationoftheaxisismeasuredbyanencoder,whiletherotationoftheshaftofeachmotorismeasuredbyanotherencoderattachedtotheshaft.Guidesareusedtopreventtheslidersfrombeingdistortedduetotheforceatbothendsofthesliders.Whenthefour-barsystemreachesoutthemost,theeffectivelengthofthespringis26.3mm.TheVSJisdesignedtogenerate30N·m.
Fig.9showsthemeasuredstiffnessoftheVSJ.Inordertomeasurethestiffness,angulardisplacementoftheaxisismeasuredwhenknowntorqueisappliedattheaxis.
Notethattheangulardisplacementisalmostlinearwithre-specttotheappliedtorque.Therefore,itispossibletoapprox-imatethestiffnesswithaconstantwhentherelativeposition
IEEETRANSACTIONSONROBOTICS,VOL.27,NO.2,APRIL2011
TABLEII
TORSIONALSTIFFNESSOFTHE
VSJ
Fig.10.FrequencyresponseoftheVSJ.(a)Frequencyresponseoftheposi-tion.Bandwidthofthepositionis2Hz.(b)Frequencyresponseofthestiffness.Bandwidthofthestiffnessis3.5Hz.
oftheactuatorsisunchanged,whichmakesthecontrollersim-pler.TableIIshowstheapproximatedstiffnesswithdifferentrelativepositionsoftheactuators.Maximumstiffnessisabout3648Nm/rad,andminimumstiffnessisabout252Nm/rad.TheresultoffrequencyanalysisisshowninFig.10.Mag-nitudeandphaseofthepositionandstiffnessoftheVSJaremeasuredwhencommandstothepositionandstiffnessaresinu-soidalfunctionswithvariousfrequencies.Fig.10(a)showsthe
机器人,刚度,柔性
CHOIetal.:ROBOTJOINTWITHVARIABLESTIFFNESSUSINGLEAFSPRINGS
Fig.11.StepresponseoftheVSJwhenthereferenceofthelinkpositionisastepfunction.(a)Positionofthelink,i.e.,ζ3,whenthepositioncommandisastepfunction.(b)Angulardisplacementoftwoactuators,i.e.,ζ1.
frequencyresponseofthepositionoftheVSJ.The3-dBcutofffrequencyofthepositionis2Hz.Fig.10(b)showsthefre-quencyresponseofthestiffness.The3-dBcutofffrequencyofthestiffnessis3.5Hz.
ResponsestopositioncommandswithdifferentstiffnessareshowninFig.11.Therelativepositionoftheactuators,whichisdenotedbyζ1in(12),iscontrolledtobeunchanged.Alink,whoseinertiaisabout0.5kg·m2,isattachedtotheVSJ.Fig.11(a)showsthepositionofthelink,whichisdenotedbyζ3in(12),withdifferentstiffness.Whenthestiffnessismaxi-mum,vibrationdoesnotoccur,therisetimebecomes0.164s,andthesettlingtimeis0.475s.However,whenthestiffnessisminimum,vibrationduetothepositioncommandoccurs.Therisetimeis0.153s,andthesettlingtimeis1.133s.Duetothevibration,thesettlingtimeislongerwithminimumstiff-ness.Modeluncertaintyandfrictioncausesteady-state
error.
235
Fig.12.StepresponseoftheVSJwhenthereferenceoftherelativepositionoftheactuatorisastepfunction.(a)Positionofthelink,i.e.,ζ3,whenthepositioncommandisastepfunction.(b)Relativepositionoftwoactuators,i.e.,ζ1.
Fig.11(b)istherelative-positionerrorwhenthepositionrefer-enceisastepfunction.Therelative-positionerrorremainslessthan0.010rad.
Fig.12showstheresponseoftheVSJwhenthereferencefunctionfortherelativepositionisastepfunction,whilethepositionofthelinkiscontrolledtoremainunchanged.Fig.12(a)showsthepositionerrorofthelink.Thepositionofthelink,i.e.,ζ3,changedlessthan0.015rad.Thechangesinthelinkpositionareduetodiscrepanciesinactuators,whichareassumedtobeidentical.Fig.12(b)showstherelativepositionoftheactuators,i.e.,ζ1.Therisetimeis0.093s,andthesettlingtimeis0.155s.Notethatlargercontrolgainresultsintheriseandsettlingtimeoftherelativepositionbeinglessthanthelinkposition.
InFig.13,theresponseoftheVSJisshownwhenbothposi-tionandstiffnessoftheVSJarechanged.Stiffnessischanged
机器人,刚度,柔性
236Fig.13.StepresponseoftheVSJwhenunitstepfunctionsareappliedasreferencesforthepositionofthelinkandtherelativepositionoftheactuators.(a)Positionofthelink,i.e.,ζ3,whenthepositioncommandisastepfunction.(b)Relativepositionoftheactuators,i.e.,ζ1.
fromitsmaximumvaluetominimumvaluewithinlessthan0.3s.Duetotheinertiaofthelink,positionresponseshowsanovershootsimilartothestepresponseofthelinkwithminimumstiffnessinFig.11(a).
Steady-stateerrorsexistduetothefrictionandmodeluncer-taintiesnotincludedinthemodel.
InordertoshowtheeffectoftheVSJinunexpectedcolli-sion,hittingagolfballandatable-tennisballexperimentwasconducted.Agolfballandatable-tennisballarehitbytheVSJwithdifferentstiffness.A520-mm-longlink,whichismadeofaluminum,isattachedtotheaxisoftheVSJ.Theballsarehitbythelinkattheheightof17mm(seeFig.14).TheVSJrotateswithmaximumandminimumstiffnessat1.2rad/s.Inordertoreducetheeffectofvibrationduetothelink,theVSJrotates1080 beforehittingtheballwhenthestiffnessis
minimum.IEEETRANSACTIONSONROBOTICS,VOL.27,NO.2,APRIL
2011
Fig.14.Experimentalsetupforhitting-ballexperiment.AlinkisattachedtotheVSJandthelinkhitstheballonthestand.
TABLEIII
FLIGHTDISTANCEOFTHEBALLSHITBYAL
INK
The ightdistanceoftheballsaremeasured.Themeanvalueofthedataaretakenafter vemeasurementsforeachstiffnesscondition,whichisshowninTableIII.
Forbothcases,theballs yfartherifthestiffnessoftheVSJismaximum.Thegolfball ies43mmfartherwhenthestiffnessismaximum.Thetable-tennisball ies104mmfartherwhenthestiffnessismaximum.Sincethemassoftheballsdoesnotchangeandtheballrestsbeforehitting,theexperimentshowsthattheaccelerationoftheballsaftercollisionisaffectedbydifferentstiffness.Lessstiffnessresultsinlessaccelerationoftheballs,whichimpliescollisionwithlessstiffnessissafer.
V.CONCLUSION
http://pli-ancewasgeneratedbyleafspringsattachedtotherotationalaxis.Changingtheeffectivelengthofthespringsresultedinchangesinstiffnessofthesprings.Theeffectivelengthofthespringswerechangedviamovingtheslider,whichhadrollerssledonthespring.Theslidersweremovedwithfour-barlink-age.Twoidenticalactuatorswereconnectedtothefour-barlinkageresultinginparallelactuation.Duetoparallelactuation,theloadtotheVSJwassharedbytheactuators.Furthermore,notorquewasrequiredbytheactuatorstomaintainthestiff-nessconstant,whichimpliesbetterenergyef ciency.Whenthebarsrotatedatthesamespeedinthesamedirection,theaxisrotateswithoutchangingthelocationofthesliders,whichresultedinthestiffnessbeingunchanged.Whenthebarsro-tatedintheoppositedirections,theslidersmovedwhiletheaxis
机器人,刚度,柔性
CHOIetal.:ROBOTJOINTWITHVARIABLESTIFFNESSUSINGLEAFSPRINGSremainmotionless,whichresultedinchangeinstiffnessofthejoint.Anonlinearcontrollerwassuggestedandproventobeastabilizingcontrollerusingasingularperturbationmodel.Thecontrollerassumedtheactuatorswereidentical,whichwasnottrueintheimplementedsystem.Asymmetriesanduncertaintiesinmodelparametersresultedinnonzerosteady-stateerrors,whichshouldbefurtherinvestigatedinordertoreducetheeffectsofthem.Experimentswereconductedtoshowthatthepositionandstiffnessofthejointwerecon-trolledindependentlyusingtwoactuators.Thestiffnesswaschangedmuchfasterthanthepositionofthelinkandvibra-tionoccurredwithminimumstiffness.WhenaballwashitbythelinkattachedtotheVSJwithmaximumstiffness,theball ewfartherthanwhenthestiffnesswasminimum.Sincethesafetyoftheobjectdependsontheaccelerationafterthecollision,theexperimentshowedthathavingalessstiffjointwassaferincaseofanunexpectedcollisionwithhumans.AmanipulatorofaservicerobotcanbeequippedwiththeVSJtopreventdamagetohumanswhenanunexpectedcollisionoccurs.
APPENDIX
PROOFOFTHEEXPONENTIALSTABILITYOF
THEREDUCEDMODEL
Proof:Sinceσ(ζf)>0,andJl>0,κ0ispositive.Thedy-namicsofthereducedsystemwiththecontrol(14)isgivenby
ζ˙ 2s= 2λζ2s+λζλ2 3s 1+κζ˙s(25)0
3
ζ¨3
s= κ0ζ3+κ0ζ2.(26)
LettingacandidateLyapunovfunctionbede nedas
V=
κ02ξ2+κ0212ζ3+2
ζ˙32
(27)whereξ=ζ2s+(λ/κ0)ζ˙s,thenthecandidateLyapunovfunc-tionispositive,exceptfor3
ζs=ζthecontrolLyapunovfunction2is3s=ζ˙s=0.Thederivativeofgiven3
by
V
˙=κ0ξξ˙+κ0ζ3ζ˙3+ζ˙3ζ¨3=κ0ξξ˙+ζ˙3s(κ0ξ λζ˙3
s)= λ(ζ˙3s)2+ξ(κ0ξ˙+κ0ζ˙3
s)= λ(ζ˙ 3s)2+κ0ξ λζ2
s λ2
sκζ˙03= λ(ζ˙3
2)2 κ0λξ2≤0.(28)
Therefore,thereducedsystemLettingΩ={ζs∈IR3|V
˙isstable.
=0},thenΩ={ζs∈IR3|ζ2s=0,ζ˙3
s=0}.(29)
LettingM ΩbethelargestinvariantsubsetofΩ,then
M={ζs∈Ω|ζs=[ζs,ζ3s,ζ˙3s]T=0}.Therefore,thesystemisasymptoticallystable,2
whichalsoimpliesthatthesystemisexponentiallystablesincethesystemislinear.
237
REFERENCES
[1]B.R.ShettyandM.H.Ang,Jr.,“ActivecompliancecontrolofaPUMA
560robot,”inProc.IEEEInt.Conf.Robot.Autom.,Minneapolis,MN,Apr.1996,pp.3720–3725.
[2]M.Zinn,B.Roth,O.Khatib,andJ.K.Salisbury,“Anewactuation
approachforhumanfriendlyrobotdesign,”Int.J.Robot.Res.,vol.34,no.4–5,pp.379–398,Apr./May2004.
[3]D.Shin,I.Sardellitti,andO.Khatib,“Ahybridactuationapproachfor
human-friendlyrobotdesign,”inProc.IEEEInt.Conf.Robot.Autom.,Pasadena,CA,May2008,pp.1747–1752.
[4]W.Wang,R.N.K.Loh,andE.Y.Gu,“Passivecomplianceversusactive
complianceinrobot-basedautomatedassemblysystems,”Ind.Robot,vol.25,no.1,pp.48–57,1998.
[5]R.VanHam,T.G.Sugar,B.Vanderborght,K.W.Hollander,and
D.Lefeber,“Compliantactuatordesigns,”IEEERobot.Autom.Mag.,vol.16,no.3,pp.81–94,Sep.2009.
[6]A.Bicchi,S.L.Rizzini,andG.Tonietti,“Compliantdesignforintrinsic
safety:Generalissuesandpreliminarydesign,”inProc.IEEE/RSJConf.Intell.Syst.Robots,Maui,HI,Apr.2001,pp.249–254.
[7]A.DeLucaandP.Lucibello,“Ageneralalgorithmfordynamicfeedback
linearizationofrobotswithelasticjoints,”inProc.IEEEInt.Conf.Robot.Autom.,Leuven,Belgium,May1998,pp.504–510.
[8]G.Palli,C.Melchiorri,andA.DeLuca,“Onthefeedbacklinearization
ofrobotswithvariablejointstiffness,”inProc.IEEEInt.Conf.Robot.Autom.,Pasadena,CA,May2008,pp.1753–1759.
[9]J.Choi,S.Park,W.Lee,andS.Kang,“Designofarobotjointwith
variablestiffness,”inProc.IEEEInt.Conf.Robot.Autom.,Pasadena,CA,May2008,pp.1760–1765.
[10]P.Tomei,“AsimplePDcontrollerforroboticswithelasticjoints,”IEEE
Trans.Automat.Control,vol.36,no.10,pp.1208–1213,Oct.1991.
[11]M.W.Spong,“Modelingandcontrolofelasticjointrobots,”J.Dyn.Syst.,
Meas.,Control,vol.109,pp.310–319,Dec.1987.
[12]G.A.PrattandM.M.Williamson,“Serieselasticactuator,”inProc.
IEEE/RSJConf.Intell.Syst.Robots,Pittsburgh,PA,Aug.1995,pp.399–406.
[13]R.V.Ham,B.Vanderborght,M.VanDamme,B.Verrelst,andD.Lefeber,
“MACCEPA,themechanicallyadjustablecomplianceandcontrollableequilibriumpositionactuator:Designandimplementationinabipedrobot,”Robot.Auton.Syst.,vol.55,pp.761–768,2007.
[14]J.W.Hurst,J.E.Chestnutt,andA.A.Rizzi,“Anactuatorwithphysically
variablestiffnessforhighlydynamicleggedlocomotion,”inProc.IEEEInt.Conf.Robot.Autom.,NewOrleans,LA,Apr.2004,pp.4662–4667.[15]S.WolfandG.Hirzinger,“Anewvariablestiffnessdesign:Matching
requirementsofthenextrobotgeneration,”inProc.IEEEInt.Conf.Robot.Autom.,Pasadena,CA,May2008,pp.1741–1746.
[16]K.W.Hollander,T.G.Sugar,andD.E.Herring,“Adjustablerobotic
tendonusinga‘JackSpring,’”inProc.Int.Conf.Rehabil.Robot.,Chicago,IL,2005,pp.113–118.
[17]T.MoritaandS.Sugano,“Designanddevelopmentofanewrobotjoint
usingamechanicalimpedanceadjuster,”inProc.IEEEInt.Conf.Robot.Autom.,Nagoya,Japan,May1995,pp.2469–2475.
[18]C.EnglishandD.Russell,“Implementationofvariablejointstiffness
throughantagonisticactuationusingrolamitesprings,”Mech.Mach.Theory,vol.34,pp.27–40,1999.
[19]S.A.Migliore,E.A.Brown,andS.P.DeWeerth,“Biologicallyinspired
jointstiffnesscontrol,”inProc.IEEEInt.Conf.Robot.Autom.,Barcelona,Spain,Apr.2005,pp.4508–4513.
[20]G.Tonietti,R.Schiavi,andA.Bicchi,“Designandcontrolofavari-ablestiffnessactuatorforsafeandfastphysicalhuman/robotinteraction,”inProc.IEEEInt.Conf.Robot.Autom.,Barcelona,Spain,Apr.2005,pp.526–531.
[21]R.Schiavi,G.Grioli,S.Sen,andA.Bicchi,“VSA-II:Anovelprototype
ofvariablestiffnessactuatorforsafeandperformingrobotsinteractingwithhumans,”inProc.IEEEInt.Conf.Robot.Autom.,Pasadena,CA,May2008,pp.2171–2176.
[22]J.Choi,S.Hong,W.Lee,andS.Kang,“Avariablestiffnessjointusingleaf
springsforrobotmanipulators,”inProc.IEEEInt.Conf.Robot.Autom.,Kobe,Japan,May2009,pp.4363–4368.
[23]B.Vanderborght,R.VanHam,D.Lefeber,T.G.Sugar,andK.W.Hol-lander,“Comparisonofmechanicaldesignandenergyconsumptionofadaptable,passive-compliantactuators,”Int.J.Robot.Res.,vol.28,no.1,pp.90–103,Jan.2009.
[24]S.H.Crandall,N.C.Dahl,http://rdner,AnIntroductiontothe
MechanicsofSolids,2nded.NewYork:McGraw-Hill,1978.
机器人,刚度,柔性
238[25]P.Kokotovi´c,H.K.Khalil,andJ.O’Reilly,SingularPerturbationMeth-odsinControl:AnalysisandDesign.Philadelphia,PA:Soc.Ind.Appl.
Math.,1999.
[26]H.K.Khalil,Nonlinearsystems,2nded.EnglewoodCliffs,NJ:Prentice-Hall,1996.
[27]D.VischerandO.Khatib,“Designanddevelopmentofhigh-performance
torque-controlledjoints,”IEEETrans.Robot.Autom.,vol.11,no.4,pp.537–544,Aug.1995.
[28]D.W.Robinson,“Designandanalysisofserieselasticityinclosed-loop
actuatorforcecontrol,”Ph.D.dissertation,Mass.Inst.Technol.,Cam-bridge,MA,Jun.2000.
[29]H.Vallery,R.Ekkelenkamp,H.vanderKooij,andM.Buss,“Passive
andaccuratetorquecontrolofserieselasticactuators,”inProc.IEEE/RSJConf.Intell.Syst.Robots,SanDiego,CA,2007,pp.
3534–3538.
JunhoChoi(M’10)receivedtheB.S.degreeinelectricalengineeringfromtheHanyangUniversity,Seoul,Korea,in2000,andthePh.D.degreeinelec-tricalengineeringsystemsfromtheUniversityofMichigan,AnnArbor,in2005.
HeiscurrentlyaSeniorResearchScientistwiththeKoreaInstituteofScienceandTechnology,Seoul.Hisresearchinterestsincludenonlinearcontrol,bipedalrobotcontrol,manipulatorcontrol,andthedesignandcontrolofasafe-jointforrobot
manipulators.
SeonghunHong(S’10)receivedtheB.S.degreeinelectricalandcomputerengineeringin2007fromHanyangUniversity,Seoul,Korea,whereheiscur-rentlyworkingtowardthePh.D.degreeinelectricalengineering.
HereceivedthelicenseofSecondarySchoolTeacher(Class-II)withinterestinthe eldofEd-ucation.Since2007,hehasbeenwiththeCenterforCognitiveRoboticsResearch,KoreaInstituteofScienceandTechnology,Seoul.Hiscurrentresearchinterestsincludenonlinearsystems,applicationsto
roboticmanipulationand eldrobotsinthe eldofcontrolengineering,cogni-tivescience,andmultipleintelligenceinthe eldof
education.
IEEETRANSACTIONSONROBOTICS,VOL.27,NO.2,APRIL2011
WoosubLeereceivedtheB.S.degreeinmechanicalengineeringfromSogangUniversity,Seoul,Korea,in1999,andtheM.S.degreeinelectronicengineer-ingfromYonseiUniversity,Seoul,in2004.
Since2004,hehasbeenaResearchScientistwiththeKoreaInstituteofScienceandTechnology,Seoul.Hiscurrentresearchinterestsarethedesignandcontrolof eldrobotsystemsanddependable
manipulators.
SungchulKang(M’98)receivedtheB.S.,M.S.,andPh.D.degreesinmechanicaldesignandproductionengineeringfromSeoulNationalUniversity,Seoul,Korea,in1989,1991,and1998,respectively.
Since1991,hehasbeenwithKoreaInstituteofScienceandTechnology,Seoul,whereheiscurrentlyaPrincipalResearchScientist.In2000,hewasaone-yearPostdoctoralResearcherwiththeMechanicalEngineeringLaboratory,Japan.In2006,hewasaVisitingResearcherwiththeArti cialIntelligenceLaboratory,StanfordUniversity,Stanford,CA.His
currentresearchinterestsincluderobotmanipulation,hapticsensinganddisplay,and eldrobot
systems.
MunsangKim(M’96)receivedtheB.S.andM.SdegreesinmechanicalengineeringfromtheSeoulNationalUniversity,Seoul,Korea,in1980and1982,respectively,andtheDr.-Ing.degreeinroboticsfromtheTechnicalUniversityofBerlin,Berlin,Germany,in1987.
Since1987,hehasbeenaResearchScientistwiththeKoreaInstituteofScienceofKorea,Seoul,wherehehasbeenleadingtheAdvancedRoboticsResearchCentersince2000andhasbeentheDirectorofthe“IntelligentRobot—TheFrontier21Program,”since
October2003.Hiscurrentresearchinterestsincludethedesignandcontrolofnovelmobile-manipulationsystems,haptic-devicedesignandcontrol,andsensorapplicationtointelligentrobots.