重庆一中2017级16-17学年度下期期中考试24 答案
发布时间:2024-11-06
发布时间:2024-11-06
重庆名校中考数学试题,针对性强
1 重庆一中2017级16-17学年度下期期中考试
数学试题
(考试时间120分钟 总分150分)
一、选择题(本大题共12小题,每题4分,共48分)
1.有四个负数-2,-4,-1,-6,其中比-5小的数是( )
A.-2
B. -4
C. -1
D.-6
2.下列图形中,是轴对称图形的是( )
3.计算325m m ÷的结果是( )
A. 25m
B. 5m
C. 4m
D. 5 4.若一个多边形的内角和为5400,则该多边形为( )边形
A. 四
B. 五
C. 六
D. 七
5.下列调查中,适宜采用全面调查(普查)方式的的是( )
A.了解我国民众对“乐天萨德事件”的看法
B. 了解浙江卫视“奔跑吧兄弟”节目的收视率
C. 调查我校某班学生喜欢上数学课的情况
D.调查某类烟花爆竹燃放的安全情况
6.
如果1m =,那么m 的取值范围是( )
A.01m <<
B.12m <<
C.23m <<
D.34m <<
7. 已知△ABC~△DEF,相似比为3:1,且△ABC 的面积与△DEF 的面积和为20,则△DEF 的面积为( )
A .5
B .2
C .15
D .18
8.已知m 是方程215x -=的解,则代数式32m -的值为( )
A .-11
B .-8
C .4
D .7
9.如图,点A 、B 、C 、D 在⊙O 上,BC 是⊙O 的直径,若∠D=36°,则∠BCA 的度数是( )
A .54° B.72° C.45° D.36°
第10题图
10.将一些完全相同的梅花按如图所示规律摆放,第1个图形有5朵梅花,第2个图形有8朵梅花,第3个图形有13朵梅花,……,按此规律,则第11个图形的梅花朵数是( )
A .121
B .125
C .144
D .148
11.鹅岭公司是重庆最早的私家园林,前身为礼圆,是国家级AAA 旅游景区,圆内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色,周末小嘉同学游览鹅岭公园,如图,在A 点处观察到毗胜楼楼底C 的仰角为12°,楼顶D 的仰角为13°,BC 是一斜坡,测得点B 与CD 之间的水平距离BE=450米.BC 的坡度i=8:15,则测得水平距离AE=1200m ,BC 的坡度i=8:15,则瞰胜楼的高度CD 为( )米. (参考数据:tan12°=0.2,tan13°=0.23)
A .34
B .35
C .36
D .
37
重庆名校中考数学试题,针对性强
12.如果关于m的不等式组
2
43(2)
x m
x x
-
⎧
>
⎪
⎨
⎪-<-
⎩
的解为1
x>,且使关于x的分式方程
1
3
22
x m
x x
-
+=
--
有非负整
数解,则符合条件的m的取值之和为()
A.-8 B.-7 C.-2 D.0
二、填空题:(每小题4分,共24分)
13.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,PM2.5粒径小,富含大量的有毒、有害物质且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响很大,2.5微米即0.000025米,将0.000025用科学记数法表示为 .
14
.计算:30
1
3()(
2
π
-
-+⨯= .
15.在一次九年级学生视力检查中,随机抽查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5, 4.0,4.8,则这组数据的中位数是 .
16.如图,在矩形ABCD中,
BC=2,以A为圆心,AD为半径画弧交线段BC与E,连接DE,则图中阴影部
分的面积为 .(结果保留π)
17. 如图,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中。如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图。则小明的家和小亮的家相距米.
18.如图,正方形ABCD的边长为4,点E是AD的中点,连接BE,过点C作CF⊥BE交BE于点F,将△FBC绕F 顺时针旋转得△FGH,使得点G落到线段AB上,连接DH交BE于点M,则DM的长度是 .
三、解答题:(共2题,共16分,解答应写出文字说明,证明过程和演算步骤)
19.如图,AF∥DE,点B、C在线段AD上,且∠E=∠F,连接FC、EB,延长EB交AF于点G.
(1)求证:BE∥CF.
(2)若CF=BE,求证:AB=CD.
2
重庆名校中考数学试题,针对性强
3 20. 随着重庆初三体育考试的日益逼近,同学们除了体育课要进行体育锻炼外,课后还要自己抽时间进行体育锻炼,某校为了解初三学生课后体育锻炼情况,随机抽取了部分同学进行调查,并按学生课后体育锻炼时间x (分钟)的多少分为以下四类:A 类(015)x ≤< ,B 类(1530)x <≤ ,C 类(3045)x <≤,D 类(45)x >.对调查结果进行整理并绘制了如图所示的不完整的扇形统计图和条形统计图,请你结合图中信息解答下列问题:
(1)扇形统计图中B 类所对应的扇形圆心角的度数是 度,并补全条形统计图;
(2)某次课间正好遇到3名男同学和1名女同学正在进行体育锻炼,学校打算从这4名同学中随机抽取2名同学进行采访,请用列表法或画树状图法求出正好抽到一名男同学和一名女同学的概率.
四.解答题:(共5题,共50分,解答应写出文字说明,证明过程和演算步骤)
21.化简:(1)2
()(2)(2)x y x y x y +--- (2)232
22(2)24x x x x x x --+÷+-
重庆名校中考数学试题,针对性强
4 22. 如图,在平面直角坐标系xoy 中,一次函数(0)y kx b k =+≠的图象与反比例函数(0)m y m x
=≠的图象交于A、B两点,与x 轴交于点C,与y 轴交于点D ,点E 是x 轴正半轴上一点,若OC=2,点E 的坐标为(4,0),点B 的纵坐标为-4,且tan 2OEB ∠=.
(1)求该一次函数和反比例函数的解析式;
(2)求△AOD 的面积.
23.手机下单,随叫随走,每公里一元……继“共享单车”后,重庆、北京、上海、成都等多地开始流行起时尚、炫酷的“共享汽车”,只需下载手机APP ,注册后就能用手机在附近找到汽车使用,到达目的地后可把车还到指定停车网点或任意的正规停车场.这种新兴出行方式越来越受到人们的青睐.在重庆,戴姆勒集团和力帆集团已经完成第一批共享汽车的投放,共计1400辆,戴姆勒集团投放的奔驰smart 汽车购买代价为15万元,力帆集团投放的AE 纯电动汽车购买单件为8万元;两家公司的汽车成本总投资额为1.54亿元.
(1)求两集团公司在重庆第一批共享汽车的投放数量分别为多少?
(2)这种共享的方式能够很好的整合社会资源,实现社会资源的优化配置,政府决定对后期投放的每辆汽车补贴成本价的%(050)a a <<,在此政策刺激下,戴姆勒集团公司决定再次购买并投放与第一次销售单价相同的第二批奔驰smart 共享汽车,数量在两家公司第一次投放综合的一般的基础上增加4%a ,并且享受完政府补贴后,购买成本为1.197亿元名,求a 的值.
重庆名校中考数学试题,针对性强
24.在菱形ABCD中,∠BAD=60°.
(1)如图1,点E为线段AB的中点,连接DE、CE,若AB=4,求线段EC的长;
(2)如图2,M为线段AC上一点(M不与A、C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,求证:DM=2DQ.
25.阅读材料,解决问题:
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可.推广成一条结论:末n位能被5n整除的数,本身必能被5n整除,反过来,末n位不能被5n 整除的数,本身必不能被5n整除.例如992250能否被25、625整除时,可按下列步骤计算:
∵25=25,50÷25=2为整数,∴992250能被25整除.
∵625=45,2250÷625=3.6不为整数,∴992250不能被625整除.
材料2:用奇偶位差法判断一个数能否被11这个是整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看能否被11整除,若能被11整除,则原数能被11整除,反之则不能.
m这个三位数能被11整除,则m= ;在该三位数末位加上和为8的两个数字,让其成为一个五(1)若62
位数,该五位数任能被11整除,求这个五位数;
(2)若5abcde这个六位数,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个
数.
5
重庆名校中考数学试题,针对性强
6 五.解答题:(共1题,共12分,解答应写出文字说明,证明过程和演算步骤)
26.已知抛物线21:42
w y x x =--+与x 轴交于A 、B 两点,与y 轴交于C 点,D 点为抛物线的顶点,E 为抛物线上一点,点E 的横坐标为-5.
(1)如图1,连接AD 、OD 、AE 、OE ,求四边形AEOD 的面积
.
重庆名校中考数学试题,针对性强
倍长MQ。△MNQ≌△CQE。得CE=MN=AM,CE∥MN。∴∠ECA=∠NMA=60°。∴∠ECD=30°
∵CD=AB,∠DAC=∠ECD=30°。
∴△ADM≌CDE
得DE=DA,∠ADM=∠EDC。得∠MDE=120°
∵DE=DA,MQ=QE
∴∠DQM=90°,∠MDQ=60°得证
7