5-4-线性微分方程解的结构

发布时间:2021-06-06

习题5.4(P306)

1. 用观察法求下列方程的一个特解.

(1) (x+1)y′′ 2xy′+2y=0

解:由于方程中y及y′的系数有关系:p(x)+xq(x)=0,故y=x为上述方程的一个特解.

(2) xy′′ (1+x)y′+y=0

解:由于方程中y及其各阶导数的系数之和为零,故y=e为上述方程的一个特解.

2. 用常数变易法求方程y′′+y=tanx的通解.

解:方程所对应的齐次方程的特征方程为r+1=0,特征根为r1,2=±i, 故方程所对应的齐次方程的通解为y=C1cosx+C2sinx

设非齐次方程的特解为y0=C1(x)cosx+C2(x)sinx, 22x

′=C1′(x)cosx C1(x)sinx+C2′(x)sinx+C2(x)cosx 则y0

′(x)sinx=0′(x)cosx+C2令C1(1)

′= C1(x)sinx+C2(x)cosx 故y0

′′= C1′(x)sinx C1(x)cosx+C2′(x)cosx C2(x)sinx y0

′(x)sinx+C2′(x)cosx=tanx代入原方程得 C1(2)

sin2x′(x)= ′(x)=sinx, 联立(1)(2)解得C1,C2cosx

sin2x解得C1(x)=∫ dx=sinx lnsecx+tanx, cosx

C2(x)=∫sinxdx= cosx, 故该方程的通解为y=C1cosx+C2sinx cosx lnsecx+tanx

3. 验证y1=e

的通解.

第5章 常微分方程 第4节 线性微分方程解的结构 1/3 x2和y2=xex22都是方程y′′ 4xy′+(4x 2)y=0的解,并写出该方程

5-4-线性微分方程解的结构.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219