游戏中的数学模型

时间:2025-04-04

数学模型

数学模型与游戏2011年2月21日

数学模型

过河问题

过河问题是世界名题,有很多种说法。最早引进中国的 是中国数学会第一届理事,扬州中学的数学教师陈怀书 先生。后我国数学科普作家、哈军工大教授薛鸿达先生 曾写过一篇专文《渡河难题》,对此进行了全面介绍。 我们将介绍三种不同的形式。

数学模型

例1 商人们怎样安全过河问题(智力游戏) 随从们密约, 在河的任 一岸, 一旦随从的人数 比商人多, 就杀人越货. 乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 问题分析 多步决策过程

小船(至多2人) 3名商人 3名随从

决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多), 经有限步使全体人员过河.

数学模型

模型构成xk~第k次渡河前此岸的商人数yk~第k次渡河前此岸的随从数 sk=(xk , yk) ~过程的状态 xk, yk=0,1,2,3;

k=1,2,

S ~ 允许状态集合 S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}

uk~第k次渡船上的商人数vk~第k次渡船上的随从数 dk=(uk , vk) ~过程的决策 D={(u , v) u+v=1, 2} 状态因决策而改变

uk, vk=0, 1, 2;k=1,2, D ~允许决策集合 ~状态转移律

sk+1=sk +(-1)kdk

数学模型

模型构成

求dk D(k=1,2, n), 使sk S, 并按转移律 sk+1=sk+(-1)kdk 由 s1=(3,3)到达 sn+1=(0,0).

问题归结为由状态 (3,3)经奇数次可取运算,即 模型求解 由可取状态到可取状态的转移,转化为(0,0)的转 移问题。 y 穷举法 ~ 编程上机

图解法 状态s=(x,y) ~ 16个格点 允许状态 ~ 10个 点 允许决策 ~ 移动1或2格; k奇,左下移; k偶,右上移. d1, d11给出安全渡河方案

3 2 1 d11 0 1 2

s1d1

sn+1

3

x

数学模型

商人们怎样安全过河智力游戏 多步决策过程(数学模型)

规格化方法 便于求解 (计算机编程等) 易于推广: 商人和随从人数增加或小船容量加大; 考虑4名商人各带一随从的情况.

多步决策模型: 恰当地设置状态和决策, 确定状态 转移律及目标(目标函数).

数学模型

例2. 人、狗、鸡、米过河问题这是一个人所共知而又十分简单的智力游戏。某人要带狗、 鸡、米过河,但小船除需要人划外,最多只能载一物过河, 而当人不在场时,狗要咬鸡、鸡要吃米,问此人应如何过河。

在本问题中,可采取如下方法:一物在此岸时相应分量为1, 而在彼岸时则取 为0,例如(1,0,1,0)表示人和鸡在此岸, 而狗和米则在对岸。

数学模型

(i)可取状态:根据题意,并非所有状态都是允许的,例如 (0,1,1,0)就是一个不可取的状态。本题中可取状态(即系 统允许的状态)可以用穷举法列出来,它们是: 人在此岸 人在对岸 (1,1,1,1) (0,0,0,0) (1,1,1,0) (0,0,0,1) (1,1,0,1) (0,0,1,0) (1,0,1,1) (0

,1,0,0) (1,0,1,0) (0,1,0,1) 总共有十个可取状态,对一般情况,应找出状态为可取的充 要条件。 (ii)可取运算:状态转移需经状态运算来实现。在实际问题 中,摆一次渡即可改变现有状态。为此也引入一个四维向量 (转移向量),用它来反映摆渡情况。例如 (1,1,0,0) 表示人带狗摆渡过河。根据题意,允许使用的转移向量只能 有(1,0,0,0,)、(1,1,0,0)、(1,0,1,0)、 (1,0,0,1)四个。

数学模型

规定一个状态向量与转移向量之间的运算。规定状态向量与 转移向量之和为一新的状态向量,其运算为对应分量相加, 且规定0+0=0,1+0=0+1=1,1+1=0。 (解释) 在具体转移时,只考虑由可取状态到可取状态的转移。问题 化为: 由初始状态(1,1,1,1)出发,经奇数次上述运算转化为 (0,0,0,0)的转移过程。 我们可以如下进行分析 (第一次渡河):

(1,1,0,0) (0,0,1,1) (1,0,1,0) (0,1,0,1) (1,1,1,1) (1,0,0,1) (0,1,1,0) (1,0,0,0) (0,1,1,1)

(不可取) (可取) (不可取) (不可取)

数学模型

(第二次渡河) (1,1,0,0) (1,1,1,1) (1,0,1,0) = (0,1,0,1) (1,0,0,1) (1,1,0,0) (1,1,0,1) (1,0,0,0)

(1,0,0,1)

(不可取) (循环,回到原先出现 过 (不可取) (可取)

以下可继续进行下去,直至转移目的实现。上述分析实际 上采用的是穷举法,对于规模较大的问题是不宜采用的。

数学模型

图解法

问题转化为求点(1,1,1,1)到点(0,0,0,0)的一条通路。

人在此岸 (1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0)0,0,0,1 1,1,1,1 0,1,0,1 1,1,0,1 0,1,0,0 1,1,1,0 1,0,1,1

人在对岸 (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)

0,0,1,0

1,0,1,0

0,0,0,0

数学模型

例3:高塔逃生:铁匠海乔90,公主安娜50,侍女40,铁 链30 原则: 人下来时两个筐子必须都有人或铁链,并且重量相差 10公斤。 注意不同于过河 问题,此过程是 两个筐子装的总重量不超过170公斤。不可逆的。共有 八种不同的方案, 转化:用向量表示状态:如(9,5,4,3)表示四者均在上面, 可试着做一下。 (9,4)表示海乔和侍女在上面,其余在下面。从(9,5,4,3)开

始,到(3)结束。 方案之一:开始 铁链下去 侍女下去铁链上来 铁链拿到筐外 公主在下面 可把铁链拿到筐里

(9,5,4,3) →(9,5,4) →(9,5,3) → (9,5)→(9,4)→(5,4,3) →(5,4) →(5,3) →(5)→(4)→(3)。

数学模型

Dü rer魔方(或幻方)问题

德国著名的艺术家Albrecht Dü rer(1471 …… 此处隐藏:2507字,全部文档内容请下载后查看。喜欢就下载吧 ……

游戏中的数学模型.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219