数据挖掘中分类技术应用(3)
发布时间:2021-06-05
发布时间:2021-06-05
西安电子科技大学数据挖掘课程课件,关于分类聚部分的
W14*节点1的值+W24*节点2的值
神经网络的每个节点都可表示成预测变量(节点1,2)的值或值的组合(节点3-6)。注意节点6的值已经不再是节点1、2的线性组合,因为数据在隐含层中传递时使用了活动函数。实际上如果没有活动函数的话,神经元网络就等价于一个线性回归函数,如果此活动函数是某种特定的非线性函数,那神经网络又等价于逻辑回归。
调整节点间连接的权重就是在建立(也称训练)神经网络时要做的工作。最早的也是最基本的权重调整方法是错误回馈法,现在较新的有变化坡度法、类牛顿法、Levenberg-Marquardt法、和遗传算法等。无论采用那种训练方法,都需要有一些参数来控制训练的过程,如防止训练过度和控制训练的速度。
决定神经网络拓扑结构(或体系结构)的是隐含层及其所含节点的个数,以及节点之间的连接方式。要从头开始设计一个神经网络,必须要决定隐含层和节点的数目,活动函数的形式,以及对权重做那
上一篇:中考不等式阅读理解新题型探究
下一篇:为中小企业融资服务谋划