Testing Mass Varying Neutrino With Short Gamma Ray Burst(2)
发布时间:2021-06-05
发布时间:2021-06-05
In this paper we study the possibility of probing for the absolute neutrino mass and its variation with short Gamma Ray Burst (GRB). We have calculated the flight time difference between a massive neutrino and a photon in two different approaches to mass v
thetdonewouldbeabletodeterminetheabsolutevalueoftheneutrinomass,howeveringeneralsincethepho-tonsaretrappedinsidethe reballandarereleasedmuchlater,theneutrinoandthephotonwillnotbeemittedatthesametime.Thiswilladdansystematicerrorinthemeasurementofthetd,consequentlyanuncertaintyinthedeterminationoftheneutrinomasses.ToreducethistypeofsystematicerrorwefocusontheshortGRBwhosedurationisgenerallylessthan2secondsorevenmuchshorter,ForexampleBurstAndTransientSourceExperiment(BATSE)
hasdiscoveredaGRBwithdura-tiononly5milliseconds[22].IthasbeenwidelyarguedthatshortGRBsareproducedbythemergeroftwocom-pactobjects(e.g.,neutronstarsorblackholes)[23],andthattheirenvironmentsarelikelytobelow-densitymediabecausethemergingplaceisfarawayfromthebirthsiteofoneneutronstar.Evenso,thepredictedafterglowsfromshortGRBsappeartobedetectablewithcurrentinstrumentsintheSwiftera[24].Oncesuchafterglowsaredetected,theredshiftsofshortGRBsmaybemea-sured.
FromFig.1onecanseethatingeneralthetimedelaytdislongerthanthedurationoftheshortGRB.Forexampleform=0.6eV,z=2,p=10Mev,tdisaround400seconds;especiallyfortheGRB030329withredshiftz=0.17,tdis112seconds.Thetimedelayforthesecasesisexpectedtobedetectableinprinciple.Ifnot,thiswillputalimitontheabsolutevalueoftheneutrinomassbetterthanthecosmologicallimits.
t
p eV
FIG.1:td(unitinsecond)asafunctionofpfordi erentred-shiftsz=0.17(solid),0.5(dashed),1(dotted),2(dashdotted).
Inthefollowingwewilldiscussthepossibilityoftest-ingonthevariationoftheneutrinomasseswiththeshortGRB.Firstofallweparametrizethevariationoftheneu-trinomassinamodelindependentway,thenwewilltaketwoconcretemodelsofQuintessenceforthecalculationofmassvariationandthetimedelayoftheneutrinos.Considerageneralcasewheremνisanarbitraryfunc-tionoftheredshiftZ,i.e.m(Z),onecanexpanditintermsofredshiftz.Forsmallz,weget:
m(Z)=m0+m′Z+
1
2
mZ+...).(3)
De ningc≡
m′(0)
m202
(1+z′)2H0
p
.Notethathere
theneutrinomassin(5)variesasafunctionofredshiftz.FromFig.2onecanseethatthevariationofthe
t
z=0.3
z=0.05
m/p
FIG.2:td(unitinsecond)asafunctionof
m0
f
ννφφ+h.c.,(6)
andmν~
v2
2Mpl
1+β
Q0
M),(8)
pl
上一篇:外研版英语九下期末综合测试题
下一篇:公务员道德修养