基于OpenCV的运动目标检测跟踪实验平台(3)
发布时间:2021-06-05
发布时间:2021-06-05
基于OpenCV的运动目标检测跟踪实验平台
的数字图像处理变得更加简单便捷、优化高效。平台实时性的要求,使得本实验对于引导学生学习和掌握OpenCV的性能和使用方法,让学生熟悉图像处理,特别是运动目标跟踪方面的知识,提高PC机Windows操作系统下的C++编程能力,能够起到相当大的作用。
6 展望
本实验设计的基于OpenCV的目标检测、跟踪平台,由于其较低的计算复杂度和较高的鲁棒性,不仅可用于智能吸尘器的控制;也可用于其它基于全地图路径规划的机器人领域,比如:收割、搜救、测绘、探伤等等场合。因此本平台具有广泛的应用前景。
参考文献:
[1]Hieu T.Nguyen, Arnold W.M. Smeulders, Fast Occluded Object Tracking by a Robust Appearance Filter, 2004 IEEE.
[2]冈萨雷斯,《数字图像处理》[M], 电子工业出版社, 2005, 40~112.
[3]Gary R. Bradski, Microcomputer Research Lab, Santa Clara, CA, Intel Corporation, Computer Vision Face Tracking For Use in a Perceptual User Interface.
[4]张春田,苏育挺,《数字图像压缩编码》[M], 清华大学出版社, 2006, 20~23.
[5]Jeffery Richter, 《Windows核心编程》[M], 2000, 121~287.
[6]钱能. C++ 程序设计教程[M]. 清华大学出版社,1999,4,1~134.
[7]opencv-doc-cn-0.9.7,OpenCV说明文档.
A Platform for Moving Object Tracking based on OpenCV
WANG Li-chao, CHEN Xi, LU Qi-yong
(E. E. Department, Fudan University, Shanghai 200433, China)
Abstract:As an active research area in these years, moving objects tracking is becoming more and more important in robot vision, monitoring, measurement and compressive coding of videos. A platform for moving objects tracking based on OpenCV is designed, which could perform real time moving objects detecting and tracking. There are also programming and hardware interfaces reserved, which can be used for future research of monitoring, measurement or robot intelligen
ce.
Key words: Object tracking; OpenCV; Experimental platform;Program interface
作者简介:
王力超(1982-),男,江苏无锡人,硕士研究生,主要研究方向为计算机视觉、网络传输、嵌入式系统等。
下一篇:小学音乐教案教学设计《夜色美》