Composite Operators and Topological Contributions in Gauge T(6)

发布时间:2021-06-05

In $D$-dimensional gauge theory with a kinetic term based on the p-form tensor gauge field, we introduce a gauge invariant operator associated with the composite formed from a electric $(p-1)$-brane and a magnetic $(q-1)$-brane in $D=p+q+1$ spacetime dimen

isavector eldnormaltothehyper-surfaceWp.Thisregularizationcontributesto

RtherenormalizationofthestringTp→Tp.

Indiscussion,theclassicalactionofthisgaugetheoryisnottopological,howdoesitgiverisetothetopologicalcontributionsidenticaltothoseoftopologicalgaugetheorywithaChern-Simonsterm(orBFterminhigherdimensions)?Thoughtheactionisdynamical,theoperatorbeingconsideredisthecompositeformedfromaelectric(p 1)-braneandamagnetic(q 1)-branetowhichap-formgauge eldcouplesinDdimensions.So,whentheyevolveandformaclosedhyper-path,theymaybemutuallylinked.Thatis,iftwocompositesareinterchanged,eachcompositeshouldbecovariantlytransportedinthep-formgaugepotentialoftheother.Thusthetopologicalcontributionsareoriginatedfromtheelectro-magneticdualstructureofthecompositesource.Inmoremathematicaldetails,thepropagatorinthetopologicalChern-Simonstheoryisgivenastheinverseoperatorofthedi erentialoperator” ”,thatisthepropagatorcontainstheantisymmetric tensor,butthegaugeinvariantsourcetermdoesnot.Ontheotherhand,inthepresentgaugetheorywithakineticterm,thepropagatorwhichistheinverseofLaplacianoperatordoesnotcontain tensor,whileoneofthecurrentsourcesJandKtowhichthegauge eldcouplesdoesit.Ifwewritetheineractiontermsindetails,

SI= i

=

where

Jµ2...µp+1(x)= i

y

Kµ1...µp(D)µp+2...µDδ(x y)dy,(11)µ1 Wq( F)D p 1+i WpAp(10)dDx(J+K)µ1µ2...µpAµ1µ2...µp,(x)=i Wpδ(x y)dyµ1...µp.(12)

Composite Operators and Topological Contributions in Gauge T(6).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219